This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

001 (part 1 of 4) 10.0 points

An object is placed 10 m before a convex lens with focal length 5.5 m . Another convex lens is placed 7.23 m behind the first lens with a focal length 5.6 m (see the figure below).

Note: Make a ray diagram sketch in order to check your numerical answer.

At what distance is the first image from the first lens?

Answer in units of m.
002 (part 2 of 4) 10.0 points
What is the magnification of the first image?
003 (part 3 of 4) $\mathbf{1 0 . 0}$ points
At what distance is the second image from the second lens?

Answer in units of m.

004 (part 4 of 4) $\mathbf{1 0 . 0}$ points
What is the magnification of the final image, when compared to the initial object?

005 (part 1 of 4) 10.0 points
An object is placed 10 m before a convex lens with focal length 5.4 m . Another concave lens is placed 8.09 m behind the first lens with a focal length -2.6 m (see the figure below).

Note: Make a ray diagram sketch in order to check your numerical answer.

At what distance is the first image from the first lens?

Answer in units of m.
006 (part 2 of 4) 10.0 points
What is the magnification of the first image?
007 (part 3 of 4) $\mathbf{1 0 . 0}$ points
At what distance is the second image from the second lens?

Answer in units of m.
008 (part 4 of 4) $\mathbf{1 0 . 0}$ points
What is the magnification of the final image, when compared to the initial object?

009 (part 1 of 2) $\mathbf{1 0 . 0}$ points

A double slit with a spacing of 0.0396 mm between the slits is 2.49 m from a screen.

If yellow light of wavelength 578 nm strikes the double slit, what is the separation between the zeroth- and first-order maxima on the screen?

Answer in units of m.

010 (part 2 of 2) $\mathbf{1 0 . 0}$ points

If blue light of wavelength 408 nm strikes the double slit, what is the separation between the second- and fourth-order maxima?

Answer in units of m .
011 (part 1 of 2) $\mathbf{1 0 . 0}$ points
A pair of narrow, parallel slits separated by 0.142 mm are illuminated by green light of wavelength 546 nm . An interference pattern is observed on a screen 1.17 m away from the plane of the slits.

Calculate the distance from the central maximum to the first bright region on either side of the central maximum. Answer in mm .

Answer in units of mm.

012 (part 2 of 2) $\mathbf{1 0 . 0}$ points

Calculate the distance between the first and second dark bands. Answer in mm.

Answer in units of mm .

$013 \quad 10.0$ points

A possible means for making an airplane invisible to radar is to coat the plane with an anti-reflective polymer. The radar waves have a wavelength of 2.04 cm and the index of refraction of the polymer is 1.63 . What is the minimum thickness required to make the coating? Assume that the plane is made of metal, so electromagnetic waves will have a π phase change upon reflection from the plane's surface.

Answer in units of cm .

$014 \quad 10.0$ points

A thin film of cryolite $\left(n_{c}=1.3\right)$ is applied to a camera lens $\left(n_{g}=1.53\right)$. The coating is designed to reflect wavelengths at the blue end of the spectrum and transmit wavelengths in the near infrared.

What minimum thickness gives high transmission at $\lambda=1024 \mathrm{~nm}$?

Answer in units of nm.

$015 \quad 10.0$ points

The light reflected from a soap bubble of index 1.42 appears red $(\lambda=662 \mathrm{~nm})$ at its center.

What is the minimum thickness?
Answer in units of nm .
016 (part 1 of 2) $\mathbf{1 0 . 0}$ points
Light of wavelength 875.6 nm illuminates a single slit of width 0.89 mm .

At what distance L from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 1.59 mm from the central maximum?

Answer in units of m.

017 (part 2 of 2) $\mathbf{1 0 . 0}$ points

What is the width of the central maximum?
Answer in units of mm .

$018 \quad 10.0$ points

Helium-neon laser light of wavelength 597.3 nm is sent through a 0.426 mm wide single slit.

What is the width of the central maximum on a screen 1.12 m from the slit?

Answer in units of mm .

$019 \quad 10.0$ points

Potassium iodide has an interplanar spacing of 0.438 nm . A monochromatic x-ray beam shows a first-order diffraction maximum when the angle of incidence is 11.4°.

Calculate the x-ray wavelength.
Answer in units of nm .

